Thermoelectric Behavior of Segregated-Network Polymer Nanocomposites
نویسندگان
چکیده
منابع مشابه
Network model for the viscoelastic behavior of polymer nanocomposites
A theoretical network model reproducing some significant features of the viscoelastic behavior of unentangled polymer melts reinforced with well dispersed non-agglomerated nanoparticles is presented. Nanocomposites with low filler volume fraction (w10%) and strong polymer–filler interactions are considered. The model is calibrated based on results obtained from discrete simulations of the equil...
متن کاملThermoelectric Transport in Nanocomposites
Thermoelectric materials which can convert energies directly between heat and electricity are used for solid state cooling and power generation. There is a big challenge to improve the efficiency of energy conversion which can be characterized by the figure of merit (ZT). In the past two decades, the introduction of nanostructures into bulk materials was believed to possibly enhance ZT. Nanocom...
متن کاملFinite Element Modeling of the Vibrational Behavior of Single-Walled Silicon Carbide Nanotube/Polymer Nanocomposites
The multi-scale finite element method is used to study the vibrational characteristics of polymer matrix reinforced by single-walled silicon carbide nanotubes. For this purpose, the nanoscale finite element method is employed to simulate the nanotubes at the nanoscale. While, the polymer is considered as a continuum at the larger scale. The polymer nanotube interphase is simulated by spring ele...
متن کاملModeling study of thermoelectric SiGe nanocomposites
Citation Minnich, A. J. et al. " Modeling study of thermoelectric SiGe nanocomposites. Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use. The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. Nanocomposite thermoelectric...
متن کاملNanostructured Thermoelectric Materials: From Superlattices to Nanocomposites
Energy transport in nanostructures differs significantly from macrostructures because of classical and quantum size effects on energy carriers. Experimental results show that the thermal conductivity values of nanostructures such as superlattices are significantly lower than that of their bulk constituent materials. The reduction in thermal conductivity led to a large increase in the thermoelec...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Nano Letters
سال: 2009
ISSN: 1530-6984,1530-6992
DOI: 10.1021/nl900263d